
CNT 4714: PHP – Part 1 Page 1 Mark Llewellyn ©

CNT 4714: Enterprise Computing

Fall 2010

Introduction to PHP – Part 1

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/fall2010

CNT 4714: PHP – Part 1 Page 2 Mark Llewellyn ©

Introduction to PHP

• We looked at a simple PHP example at the end of the set of

notes that covered the installation of the Apache HTTP

Server and PHP.

• PHP scripts can be created with any text editor, although

Notepad++ is quite convenient for PHP scripting. I’ll

primarily use it in the examples.

• PHP script files should be saved with a .php extension.

• When PHP is embedded inside XHTML documents, as it

commonly is, several different delimiters can be used. These

are illustrated on the next page.

CNT 4714: PHP – Part 1 Page 3 Mark Llewellyn ©

Introduction to PHP

Common PHP delimiter in

XHTML documents where

more that one type of

embedded script might be

used.

CNT 4714: PHP – Part 1 Page 4 Mark Llewellyn ©

Introduction to PHP

Standard PHP delimiter. If

your PHP installation set-up
has short_open_tag

enabled, you can actually
remove the php from the

delimiter.
If asp_tags are enabled you

cal use <% and %> as

delimiters.

CNT 4714: PHP – Part 1 Page 5 Mark Llewellyn ©

Introduction to PHP

• As with any programming language, good practice in writing

scripts would require comments to be included within the

script.

• In-line comments in PHP are indicated with two forward

slashes (//).

• Comments can appear any where in the script file and can

appear in any position on any line.

• Multiple line comments are delimited with /* and */

• Most PHP implementations also allow # to delimit in-line

comments.

CNT 4714: PHP – Part 1 Page 6 Mark Llewellyn ©

Variables In PHP

• You can select just about any set of characters for a variable

name in PHP, but they must:

– Use a dollar sign ($) as the first character.

– Use a letter or an underscore character (_) as the second

character.

• Note: As with any programming/scripting language, good

practice would suggest selecting variable names that help

describe their function. For example $counter is more

descriptive than $c or $ctr.

CNT 4714: PHP – Part 1 Page 7 Mark Llewellyn ©

Variables In PHP

• That is, to print out the value of $x, write the following PHP

statement:

print ("$x");

• The following code will output “Candice is 26 years old”.

$age=26;

print (“Candice is $age years old.");

• The next page illustrates a full example using PHP variables.

CNT 4714: PHP – Part 1 Page 8 Mark Llewellyn ©

Variables In PHP

CNT 4714: PHP – Part 1 Page 9 Mark Llewellyn ©

Arithmetic Operations In PHP
• PHP supports all normal arithmetic operators,

with the normal semantic associated with each

operator.

Table 2.1 Common PHP Numeric Operators

Operator Effect Example Result

+ Addition $x = 2 + 2; $x is assigned 4.

- Subtraction $y = 3;

$y = $y – 1;

$y is assigned 2.

/ Division $y = 14 / 2;

$y is assigned 7.

* Multiplication $z = 4;

$y = $z * 4;

$y is assigned 16.

% Remainder $y = 14 % 3; $y is assigned 2.

• PHP supports automatic

increment and decrement

operations in both prefix

and postfix form, i.e., --

and ++.

• Using an unassigned

variable in an expression

does not generate an

error, the value is simply

assumed to be null.

<?php

$y = 3;

$y = $y + $x + 1;

print(“x=$x y=$y”);

?>

The output is: x=y=4

CNT 4714: PHP – Part 1 Page 10 Mark Llewellyn ©

String Variables In PHP

• PHP supports character string variables and this is a widely

used aspect of PHP in handling form data.

• Be careful in PHP not to mix numeric and string types together

in an expression.

• For example, you might expect the following statements to

generate an error message, but they will not. Instead, they will

output “y=1”.

<?php

$x = “banana”;

$sum = 1 + $x’

print(“y=$sum”);

?>

CNT 4714: PHP – Part 1 Page 11 Mark Llewellyn ©

String Variables In PHP
• The string concatenation operator in PHP is the period as shown

below:

<?php

$firstname = “Megan”;

$lastname = “Fox”

$fullname = $firstname . $lastname;

print(“Full name = $fullname”);

?>

The output of this script would be: Fullname=MeganFox

You can also use double quotation marks to create concatenation directly. Using the above

example you could do the following: $fullname2 = “$firstname $lastname”; This would have the

same effect as: $fullname2 = $firstname . $lastname;

CNT 4714: PHP – Part 1 Page 12 Mark Llewellyn ©

String Variables In PHP
• PHP supports a large variety of string handling functions. A

few of the more commonly used ones are illustrated on the next

few pages.

• Most string functions require you to send them one or more

arguments.

• Arguments are input values that functions use in the processing

they do.

• Often functions return a value to the script based on the input

arguments. For example:

$len = strlen($name);

Variable or value to work with

Name of function

Receives the number of

characters in $name

CNT 4714: PHP – Part 1 Page 13 Mark Llewellyn ©

String Variables In PHP

strlen() function:

• This function returns the number of characters in the string

argument to the function. Consider the following script:

<?php

$comments = "Good Job";

$len = strlen($comments);

print ("Length=$len");

?>

This PHP script would output “Length=8”.

CNT 4714: PHP – Part 1 Page 14 Mark Llewellyn ©

String Variables In PHP

trim() function:

• This function removes any blank characters from the beginning

and end of a string. For example, consider the following script:

<?php

$in_name = “ Megan Fox ";

$name = trim($in_name);

print ("name=$name$name");

?>

This PHP script would output “name=Megan FoxMegan Fox”.

CNT 4714: PHP – Part 1 Page 15 Mark Llewellyn ©

String Variables In PHP

strtolower()and strtoupper functions:

• These functions return the argument string in all uppercase or all

lowercase letters, respectively. For example, consider the

following script:

<?php

$inquote = “Now Is The Time";

$lower = strtolower($inquote);

$upper = strtoupper($inquote);

print(“upper=$upper lower=$lower”);

?>

This PHP script would output “upper=NOW IS THE TIME lower =

now is the time”

CNT 4714: PHP – Part 1 Page 16 Mark Llewellyn ©

String Variables In PHP

substr()function:

• This function enables a PHP script to extract a portion of the

characters in a string variable. The general syntax is:

$part = substr($name, 0, 5);

Assign the

extracted sub-

string into this

variable.

Extract from this

string variable.

Starting position to

start extraction from.

Number of characters

to extract. (If omitted it will

continue to extract until the end

of the string.)

CNT 4714: PHP – Part 1 Page 17 Mark Llewellyn ©

String Variables In PHP

substr()function:

• The substr() function enumerates character positions starting with

0 (not 1),

• For example, in the string “Homer”, the “H” would be position

0, the “o” would be position 1, the “m” position 2, and so on.

• For example, the following would output “Month=12 Day=25”.

<?php

$date = "12/25/2002";

$month = substr($date, 0, 2);

$day = substr($date, 3, 2);

print ("Month=$month Day=$day");

?>

CNT 4714: PHP – Part 1 Page 18 Mark Llewellyn ©

String Variables In PHP

substr()function:

 This example does not include the third argument (and thus

returns a substring from the starting position to the end of the

search string).

<?php

$date = "12/25/2010";

$year = substr($date, 6);

print ("Year=$year");

?>

 The above script segment would output “Year=2010”.

CNT 4714: PHP – Part 1 Page 19 Mark Llewellyn ©

Controlling Script Flow In PHP

• PHP contains the normal control statements that handle decision

making and iteration within a script.

• Normal logical operators are all supported with their standard

semantic.

• As with many modern programming and scripting languages

remember to use == in a logical comparison operation and not =.

The single equal sign is an assignment operator and as such is

always true. No syntax error is generated.

• The table on the following page illustrates the common logical

operators in PHP.

CNT 4714: PHP – Part 1 Page 20 Mark Llewellyn ©

Controlling Script Flow In PHP

 Test

Operator

Effect Example Result

== Equal to if ($x == 6){

 $x = $y + 1;

 $y = $x + 1;

}

Run the second and third

statements if the value of $x is

equal to 6.

!= Not equal to if ($x != $y) {

 $x = 5 + 1;

}

Run the second statement if the

value of $x is not equal to the

value of $y.

< Less than if ($x < 100) {

 $y = 5;

}

Run the second statement if the

value of $x is less than 100.

> Greater than if ($x > 51) {

 print "OK";

}

Run the second statement if the

value of $x is greater than 51.

>= Greater than or

equal to

if (16 >= $x) {

 print "x=$x" ;

}

Run the second statement if 16

is greater than or equal to the

value of $x.

<= Less than or

equal to

if ($x <= $y) {

 print "y=$y" ;

 print "x=$x" ;

}

Run the second and third

statements if the value of $x is

less than or equal to the value of

$y.

CNT 4714: PHP – Part 1 Page 21 Mark Llewellyn ©

Controlling Script Flow In PHP

• The following example uses an input form (XHTML) and two

values are extracted from the form (grade1 and grade2), passed to

a PHP script which determines the average score, the maximum

score and assigns a grade to the average for the student’s scores.

• We’ll get much more into forms and form handling in PHP later,

but this simple example will illustrate several of the common

threads that appear in form handling in PHP (and server side

scripting in general).

CNT 4714: PHP – Part 1 Page 22 Mark Llewellyn ©

Controlling Script Flow In PHP

decisions.html

CNT 4714: PHP – Part 1 Page 23 Mark Llewellyn ©

Controlling Script Flow In PHP

Executing
decisions.html

User enters two

scores, clicks
submit button.

CNT 4714: PHP – Part 1 Page 24 Mark Llewellyn ©

Controlling Script Flow In PHP

Clicking the submit

button triggers the

action of the form

and invokes the

script
decisions.php

The script

generates this

page. The PHP

script is shown on

the next page.

CNT 4714: PHP – Part 1 Page 25 Mark Llewellyn ©

Controlling Script Flow In PHP

Clicking the submit

button triggers the

action of the form

and invokes the

script
decisions.php

The script

generates this

page. The PHP

script is shown on

the next page.

CNT 4714: PHP – Part 1 Page 26 Mark Llewellyn ©

Controlling Script Flow In PHP

• PHP supports three types of iterative constructs:

– the for loop

– the while loop

– and the foreach loop.

• The for and while loops act as you would expect given your

knowledge of other programming languages. The foreach loop

applies specifically to arrays in PHP. We’ll look at the foreach

loop later.

• The example on the next couple of pages illustrates a while loop.

Again, I’ve used a form to extract user input. This time the user

input sets the lower and upper limit on the loop.

CNT 4714: PHP – Part 1 Page 27 Mark Llewellyn ©

Controlling Script Flow In PHP

whileloop.html

CNT 4714: PHP – Part 1 Page 28 Mark Llewellyn ©

Controlling Script Flow In PHP

Executing
whileloop.html

User enters lower

and upper limits,
clicks submit button.

CNT 4714: PHP – Part 1 Page 29 Mark Llewellyn ©

Controlling Script Flow In PHP

Clicking the submit

button triggers the

action of the form

and invokes the

script
whileloop.php

The script

generates this

page. The PHP

script is shown on

the next page.

CNT 4714: PHP – Part 1 Page 30 Mark Llewellyn ©

Controlling Script Flow In PHP

Clicking the submit

button triggers the

action of the form

and invokes the

script
whileloop.php

The script

generates this

page. The PHP

script is shown on

the next page.

CNT 4714: PHP – Part 1 Page 31 Mark Llewellyn ©

Using PHP With REGISTER_GLOBALS OFF

• Since PHP 4.2.0, PHP is shipped with the

REGISTER_GLOBALS configuration variable set to OFF. Prior

to version 4.2.0 this variable was set to ON, but represented a

fairly large security concern, so since that time the default setting

is OFF. While this setting can be overridden by local system

administrators, it is wise not to do so.

• When PHP is configured with REGISTER_GLOBALS set to

OFF, you need an extra step to receive input from forms, cookies,

or session variables.

• You can tell your PHP site’s status of REGISTER_GLOBALS by

running the phpInfo() function that was shown in the

hello.php script in the setting up PHP section of notes

(repeated here)…

CNT 4714: PHP – Part 1 Page 32 Mark Llewellyn ©

A PHP Test Example

This is

PHP

Create this file named
hello.php and save it to the

htdocs folder in the Apache

server.

Then start your browser and enter

the URL:

http://localhost:8081/hello.php

and you should see output similar

to that shown on the next slide.

http://localhost:8081/hello.php

CNT 4714: PHP – Part 1 Page 33 Mark Llewellyn ©

Scan down the output

listing until you get to

the Core settings for

PHP and in this table

you’ll find the setting for

REGISTER_GLOBALS.

First column is the local

value and the second

column is the master

value (originally set

implementation value)

CNT 4714: PHP – Part 1 Page 34 Mark Llewellyn ©

Using PHP With REGISTER_GLOBALS OFF

• When REGISTER_GLOBALS is set to OFF you must receive

XHTML form input data using the $_POST, or $_GET associative

arrays.

• Go back and look at the PHP scripts on pages 25 and 30 and you

will see the $_POST associative array has been used in both

examples to extract the input form data.

• We’ll deal with this in more detail later, but for now these two

examples should give you a good idea of how form data extraction

is handled in PHP scripts.

• There are many other associative arrays utilized in PHP. The

remainder of this set of notes is devoted to some of these arrays.

CNT 4714: PHP – Part 1 Page 35 Mark Llewellyn ©

Viewing Client/Server Environment Variables

• Knowledge of a client’s execution environment is useful to

system administrators who want to provide client-specific

information.

• Environment variables contain information about a script’s

environment, such as the client’s web browser, the HTTP

host and the HTTP connection.

– The table on the next page summarizes some of the superglobal

arrays defined by PHP.

• The XHTML document on page 37 displays the values of the

server’s environment variables in a table. PHP stores the

server variables and their values in the $_SERVER array.

Iterating through the array allows one to view all of the

server’s environment variables.

CNT 4714: PHP – Part 1 Page 36 Mark Llewellyn ©

Some Superglobal Environment Arrays

Variable Name Description

$_SERVER Data about the currently running server.

$_ENV Data about the client’s environment.

$_GET Data posted to the server by the get method.

$_POST Data posted to the server by the post method.

$_COOKIE Data contained in cookies on the client’s computer.

$GLOBALS Array containing all global variables.

CNT 4714: PHP – Part 1 Page 37 Mark Llewellyn ©

server.php Example

Iterate through the

$_SERVER array to list all

of the SERVER variables for

the current server on which

PHP is running.

CNT 4714: PHP – Part 1 Page 38 Mark Llewellyn ©

Output from

executing

server.php

